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This article deals with plane steady motion of an ideal compressible 
fluid. In [l ] it has been demonstrated that if a function of the velo- 
city vlp, I,& (p is the pressure and $ the stream function) is such that 
the value of (l/vl(d?&p*) is independent of $, the nonlinear equation 
of vortex motion Ea.3 I reduces to a linear-potential flow equation; 
this is a generalisation of the known results due to Rudnev [ 3 1. With 
adiabatic motion this condition can be approximated if the entropy 
function 4tC& = p’jk/p (p is t h density) has a small variation. Such e 
adiabatic flows, in the supersonic case, were dealt with earlier by 
Tarasov [4,5,6 ] with the additional assumption that (l/v) (d*v/dp”) = 
const, and without bringing out their relationship with potential flows. 
We point out. moreover, that the nonlinear problems of the type discussed 
here, and their general reduction to linear cases is studied in [ 7.8 ] . 

Here we give a proof to confirm the work in [ 11 for an example of 
adiabatic flow. Further on, a generalised approximate method is discussed 
which can he applied to potential motions in supersonic vortex flow. To 
do this we construct an approximate general solution similar to that of 
Khristianovich [ 9 1, but containing three and not two arbitrary fiunc- 
tions. A solution is given for the certain boundary-value problelgsith- 
out shock and also for several flow problems with shock. 

1. Statement of the preblem. Let us take the plane vortex gas- 
flow equation, deduced by Sedov [ 2 1 in Rudnev’ s form [ 3 1 : 

dz = d(z+iy) = -poeie[_(v~.+ i-$2) de + (g2!$+igz)dp!, (1.2) 
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The problem of plane vortex gas flow 329 

Here 8 is the angle the velocity vector makes with the x axis, p0 is 
some constant with the dimensions of density; the velocity v is deter- 
mined from the Bernouilli integral 

k-1 

-g+ (l-3) 

where the total heat of stagnation i, = const. 

Introduce the function $= $/a* and the dimensionless quantities 

k-1 

v EL, 
a* 

,=P 
PO ’ (1.4) 

where a* is the critical velocity of sound. For simplicity, the dashes 
will be omitted in what follows. 'Ihen, when we substitute the quantities 
deduced in this manner into (1.1) and (1.21, the latter retain their 
form except that p0 in (1.2) disappears. Formula (1.3) and the adiabatic 
equations will be written thus: 

2, (P, 4) = [S (I- k& PkG% ($))]“, 9((9) = 2ksp+,, (1.5) 
It is assumed, as before in 14 1, that the function 9($1) can be re- 

presented as 

W> = %(I + WJ)) (1.6) 

where 9, is its main part which is constant, whilst S,($) is a small 
variable quantity whose square can be neglected in comparison with unity. 
If we take pa to be the density at the stagnation point on the stream- 
line += +!~a, where S,($a) = 0, th e value of a0 will be determined from 
(15) with the condition that at this point p = 1, p = (k + 1)/2k. For 
air k = 1.4 and 8, = 0.2986. 

Let us expand the function u(p, #> (1.5) 
into a series in powers of the small para- 

meter81($1 and limit it to two terms only. 
Ihen we have 

V(P, $1 = &l(P) + WV1W (1.7) 

where 
k--l 

&I (P) = [;2 (I - $J PP3)!f 

(1.8) 

FI6. 1. 
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Furthermre, let us assume that the quantity (l/~)@~v/dp~) is iude- 
peudent of #J. For this we should have [ 2 1 

(1.9) 

it 
Here the strokes denote the operation of differentiating. From (1.9) 
follows that 

(1.10) 

where I and uI are integration constants, whilst the integral, with k = 
1.4 is 

s &=- 
Making use of our choice of constants I and I~ we replwe function 

AI(p) (1.8) approximately by function (1.10) so that there are two comon 
points, or a comon tangent at one point; for 0.7 < A, < 2.2 this gives 
good approximation over large ranges of A,.,. For X, = 1.309, if I = - 6.241 
and a1 = - 0.3868, we get by this means a second-order taugency. For this 
case, on Fig. 1, the full line shows the accurate relation X,(X,) (1.8) 
aud the broken line represents the approximation from Formula (1.10). 

2. Reduction of the cqmation of vortex motion to a poten- 
tial-flow egprtion. We introduce a new function qP by formula 

Differentiating this equation with respect to p and 8 we get 

(2.1) 

(2 4 

P-3) 

(2.4) 

(2.5) 

On subtracting Epuation (2.51, multiplied tens by term by the Limit 
relations (1.91, from (2.4)) we arrive at au expression, on the R.&S. 
of rhich there will be the operator (1.1). ‘lhen the L.H.S. gives us a. 
1 inear equation for the function yP 
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ho (P) gI - ayJ* w* ho” (P) - + 2h,’ (P) F = 0 (2.6) 

which replaces the quasi-linear equation (1.1). Obviously (2.6) coincides 
with a potential-flow equation, for which X,(p) is the velocity and $* 
is the stream function. 

To transform the formulas (1.2) we introduce the function 

It follows from (2.2) and (2.7) that 

,Y 
‘O ap -$q+)=u~ P-8) 

Into (1.2) we substitute the derivatives of u with respect to p from 
(2.7) and (1.9) and then using (2.8) and (2.3) we eliminate the products 

u(ch,Vdp) and u(~?$/d@ ). 

'lhen (1.2) reduces to the expression 

dz = dz* + dzl 

where dz* is the formula for potential flow 

(2.9) 

dz* = - eia K ho ‘3 + ik,’ ‘3) &J + (ho” a% + ij,,’ ?$) Q] (2.10) 

whilst 
Z1 = - ieiei.o-l(p)mx(+) (2.11) 

lhus, the integration of the vortex motion equation is reduced to au 
analogous potential-flow problem. 

In accordance with the properties of implicit functions, the relation 
between the stream-functions $ and p (2.1) will be unique. Furthermore, 
along the line p = const these functions either grow or decrease simul- 
taneously, inasmuch as from (2.1) aJI*/d$ > 0. It follows from (2.1) and 
(2.9) that the streamlines of the vortex motion at which x($) = 0 (zl= 0) 
coincide with the corresponding lines for potential flow. In particular, 
the lines ti= 0 and v = 0 coincide. 

In this manner, to each vortex motion of a gas there can be *matched* 
a single corresponding potential flow and vice versa. Thus, the solution 
of the boundary-value problem without shock for vortex motion can be re- 
placed by a solution in the same region p, 8 of a potential problem whose 
boundary conditions are determined from those given for $ from (2.1). 
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Having found the potential-flow solution, on reversing the process back 
to (2.1) we obtain the solution of the vortex problem. It is evident 
that the theorems of the existence and the uniqueness of the solution, 
when proved for potential flows, also apply to the given vortex flows. 

3. Approximate integration of the equations of vortex 
supersonic gas flow. Now, dealing only with supersonic motion, we go 
over in Equation (2.6) to the characteristic variables 

P 
35 = a - 0, 

2*q= o-/+0, a=- pbwp, 
s 

p= 
J 

4” (PI 
- 
47 (PI 

P. 

where the critical pressure p, is, evidently, identical for vortex and 
for potential mution for any value of $, because it is determined from 
the condition that (1.9) vanishes 12 1. 

Equation (2.6) appears in the well-known form [9 1 

In this expression K is aaplygin's function. This formula, together 
with (3.1), ties up dKK,, A,, p, p as functions of u. For adiabatic flow, 
according to (1.81, taking account of the values of&*, we have the 
familiar formulas 

;= dA0 Ao2- 1 
1 -Ao2/ v A, ’ 

;I/K,= v- hoa - 1 kfl 
(1 -&)2/u)” ( “=k-_l 1 (3.3) 

1 

'lhe following approximation was suggested by Khristianovich (3.4) 

)fK, = (lo* (u + cp, h, =zz ao (a -I 4 r/K 
Nsin(afE)’ p’=T’ p = k2 (cot(u+E)+n) 

which, with the constants aa2 = 18.5, c,, = 0.185, N= 2.398, 6 = 0.3347, 
n=- 0.3161, gives a good approximation in the neighborhood of the 
point 0 = 0.197 to 0.20. 

'Ihe general solution for this case is as follows: 

(i + rl + co) 9* = Ql (Er) -I- a2 (q) 

where $(t> and Q2(u) are arbitrary functions. 

fvow let us study the vortex motion which corresponds to a given 

potential motion. From (1.101, (3.1) and (3.4) we get 

(3.S) 



The problem of plane vortex gas flow 333 

Taking al = 0.03868, c1 = - 48.74 we approximate the function A1 (1.8) 
by the function (3.6) which is tangent to it at the point u = 0.197. In 

Fig. 2 we give a comparison between the exact relations between A,, and A, 
and o (full lines) and the approximate 
ones from Formulas (3.4) and (3.6). 

1.6 

Lb 

From (2.1) and (3.4)-(3.6) we obtain 
the approximate general solution to the 
equation of vortex motion 

(5 + q -t cl++ + a(i + rf cJx($) = 

-1.6 = @I(5) + Q, (ri) (3.7) 

-12 
where a = al/a0 and x($) is determined 
in (2.7). It is clear from (2.7) that 
for any finite value of f+G, XC+) is small, 

10 
0 0.2 -" 

together with a,($). Then, if we replace 

0.4 06 the argument of the small function XC+) 
by the nearly equal quantity $* (3.5), 

FIG. 2. from (3.7) we obtain, if necessary, an 
implicit expression I/J = +I([, q). 

'Ihe formula for transformation to the physical plane was obtained by 

us in the form (2.9). Let us put dz* (2.10) in characteristic coordinates 

Inserting into this the approximate expressions p, A, and the partial 
derivatives of function $* from (3.5), and working out the quadratures 
we obtain 

z* = ia, I a,e"(q-c) horn1 (t + q) [(D1 (t) + U&(q)] - 

-N [\e-i(zE+r) 0,' (5)dS + \ ei(zn-tr) Q' ($olq]} 
(3.9) 

Furthermore 

21 = - if++--s) ho-l (6 + q) “1.X (c/J), m = UOUl (Cl - C”) 
and 

(3.10) 

z = z*+ Zl (3.11) 

In this way we have obtained an approximate general solution for a 
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vortex supersonic flow in the (5, 11) plane which depends on three 
arbitrary functions 4, (0, a2 (0 and x($), and also a foivaula for trans- 
ferring to the physical plane. In an exactly similar way, approximate 
general solutions can be found which correspond to other approximations 
of &plygin functions, both for cases of subsonic and supersonic flow. 

4. Boundary-value problem for flows without shock. It is 
possible to establish four basic boundary-value problems for such flows: 
Cauchy’s problem, Goursat’s problem, flow with a free surface and flow 
past a solid wall. The function XC@, which represents the vortex dis- 
tribution, should, in this case be given. Ben the general solution 
(3.7), is simple in form, all these problems can be solved, and, indeed, 
directly, without introducing potential flow as recoava&nded in Section 2. 
The same actual difficulties will arise, because functions a,(f) and 
4(q) are the same for both of the flows. 

As an example w will examine the flow past a solid wall given by the 
equations x = X(0) and .y = Y(O), if, on the characteristic t = 4, = 
const which intersects it, we are given $ = I,$ (11) and x($). 

As usual, we talce the wall to be the line += 0. Then, OR it x(+) = 0 
and 

R(i) + @z(o) = 0 (4.1) 

where r) = &?) is the equation of the solid wall in the e, q plane. From 
(3.7), by the condition on the characteristic 5‘ = 5, we have 

@)a (7) = (to + +q --I- 4 $9 (7) + a (Eo + -q + cd x [+a WI - @I (Eo) (4.2) 

lhe function a,(f) is determined from (4.1) if o(e) is known. A 
differential equation for finding ~(5) is easily obtained from (3.9) be- 
cause x(y%) = 0, from the condition of total differentiation (4.1) with 
respect to 6 by separating the real and imaginary parts. In sylaaetrical 
form this is 

[x’(W-E)cos(C--~)+Y’(O-~)sin(o-~)][W’(E)-~1]- 

- 2Na0 sin (E -k w + E) @2/ (0) 61’ (Ej = 0 (4.3) 

It is just as sinple to solve all the other problems. 

5. Gmditiens at the shock waves. To find the solution to flow 
problems involving shock waves let us examine the conditions which have 
to be fulfilled. These are, first of all, conditions of dpaapic cospat- 

ibility which for steady conditions are as follows: 

-- Pl?!l?l [~7nl = Ipl, Iv,1 - 0, h%l = 0, [i,] = 0 (5.1) 
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where the symbol [ 1 denotes the discontinuity, index 1 relates to para- 
meters before the shock, I), and II,, are velocity coqonents tangential 
and normal to the shock wave drawn in the direction of the flow of the 
gas. If /3 is the angle between the shock wave and the r-axis, then ur = 
II cos @?- 01 and u,, = v sin @- 6). 

Let us express the conditions (5.1) in dimensionless form. For pb we 
take the stagnation density at some streamline $= &, behind the wave 
front and we assume i, and a* to remain the same before and after the 
shock. Through these the fourth condition will be fulfilled whilst the 
first three remain as before. 

We will limit our study from now on to a steady oncoming flow along 
the direction of the x-axis, i.e. 8, = 0. Denoting tan /3 by r from (5.1), 
after some siople transformation we obtain 

p1r12 rsin 0 
r sin 0 -I- co,5 0 = [p], ~1 = 2’ (r sin 8 + cos e), plcl l” = pv (r cos fl - sin 0) (5.2) 

Here we only examine those shock waves for which the flow remains 
supersonic on traversing them, and the function a($> which interests us 
hardly alters. Then, if we represent the velocity v(p, $1 in the form 
(l.?), from the first and the second condition we arrive at 

+ = (g._+o 

x’ (9) = $ {c$(1 - $$) - )‘o} 

(3.3) 

(S.4) 

In Formulas (5.21-(5.41 we will regard A,, A,, p as functions of o 
(3.1). 'lhen, in the third condition (5.21, in accordance with the 
Bernouilli integral l/p = pu (du/&), and eliminating r and ~'($1 we 
arrive at a quadratic in cos 8 which yields 

where A, is expressed by Formula (1.10). 

Only a plus sign is admissible in front of the square root, as this 
corresponds to supersonic flow behind the shock wave; when [pl = 0, 
cos 8 = 1, 8 = 8, = 0. 'Ihe expression (5.5) represents a relationship 
between u and 8 on the shock wave. Evidently, then, l'= l' (u) and 
x’~l$b) = f(o). 

From (3.1) and (5.5) we have 

2izo_ cos-1 H(G), 

which may be regarded as parametric 

2r, == s -:- cos'lH(o) (3.6) 

equations of a shock wave in the 
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characteristic plane, elimination of u from which gives q = g(t) or 
[ = h(q). All the functions on the shook wave can be expressed through 

one of the parsmeters cr, [ or q . 

From Formula (1.2) with condition (1.9) after going over to character- 

istic variables, we obtain 

We will consider here c and q to be connected by the expressions 

(5.6). l&en (5.7) might b e a parsmetric equation for the shock wave in 
the physical plane. As, on the wave, dy/& = I?, then from (5.7) and (5.2) 

it is easy to derive the equation 

To this we add one more obvious equation 

On the shock wave $ = $” (01 = $1” (~$1 = Ic;,” (7 1, x’@i) = f(o) = fl ((1. 

when solving boundary-value problems with the help of the general 

solution (3.7) it is natural to take the functions entering (5.3) to 

(5.8) in the approximate form given by (3.41 and (3.6). This gives satis- 

factory results until tpl = p(o) - p1 is so small that the approximate 
difference expression gives a significant error (about lO!%), although 

the error in determining (01 itself may not be great. If necessary this 

difficulty might be overcome by constructing an approximation at the point 

(I corresponding to p = pl. 

6. Boundary-value problems for flows with shocks. In such 

problems the fuuction x(#l is not known beforehand in the approximate 

general solution (3.71 and it has to be found together with Q,(t) and 

Q2(ql from the boundary conditions and the conditions on the shock wave, 

Let us examine two problems where we determine the motion of gas in 
the region bounded by the shock wave and two intersecting character- 
istics of opposing families. For simplicity we assume that on the stream- 

line passing through 0, the intersection of the shock wave with one of 

the characteristics is $= $a = 0. ‘Ihe parameters of the steady stresm in 

front of the wave are known. 

Probler f . Assume that the shape of the shock wave is defined by the 
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equations x = ZP(~ and y = y@ r ). 

To solve the problem one must know the values of the dimensionless 
parameters p1 and pl, which depend on the stagnation density pe behind 
the shock on the streamline $s = 0. We find this from the condition 
[ ie 1 = 0, i.e. p,,/psl = p,,/~,,~, because for PO known at point 0 the 
R.H.S. of the equation can be worked out exactly [3 1. In particular, if 
the shock wave is tangent to the characteristic at point 0, then pc = pal. 

We find the values of us and 8, at point 0 from (5.3) and (5.5) for 
r= re. 

In view of the fact that r = r(o) the shock wave equation can be 
written x = Z’(O) and y = y’(o). Additionally, on it we have evidently 

+ = PlQYO -. yo) where y. is the coordinate of point 0. If we introduce 
(5.4) and integrate it we obtain 

(6.1) 

These equations give a parametric representation of the function x($) 
along the shock wave. This is sufficient for finding the solution in the 
region occupied by streamlines which intersect the nave. as, for 
instance, in the problem of finding the shape of a profile. To find the 
solution for the other part of the region we should be given the func- 
tion XC@) there. 

From (5.6) and (5.9) we have 

a4 
ag = + (1 - p (:, q)) #Ic’ (E), 2 = $ (1 + P (4, q)) 4;’ (q) (W) 

Thus, $ with its partial derivatives and x($) are found on the shock 
wave and the problem reduces to a Cauchy problem. 

It follows from the general solution of (3.7) that 

If we express the R.H.S. of the first formula by 5 and of the second 
by 7 and work out the quadratures, we find the functions @I(() and @g,(s). 
The integration constants are found, as usual, from the conditions at 
point 0. 

Problem 2. Suppose that the shape of the shock wave is not known, but 
we are given the flow parameters on one of the characteristics (for 
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instance 7 = qe) which does not intersect the streamlines which go 
through a section of the wave, i.e. $ = fil((5) and x($) are given. 

From the general solution (3.7) for q = q,, we find 

0, (E) = (E + qo + co) $1(E) t- c (5 + rl.) + Cl> % ($3 - Q)? (7io) (6.4) 

Eliminating ~?$/a? from (5.8) and (5.9) and replacing a$/&$ from 
(6.3) we arrive at the equation 

(6.5) 

where 

Adding to this (5.4) in this form 

3 = fi (E) dg (6.6) 

we obtain a system of ordinary linear equations for finding $,O([) and 
x. Its solution is 

’ H(E) 
(J =&“(E) = \md’* 

z. 
(6.7) 

where to is the value of e at point 0, and 

The function XC& is therefore determined parametrically. Then, from 
(3.7) taken on the shock wave we find 

Q (?I = (h(q) + q i- co) ho (7) -I- a (h (d-t T + cd x (4~2’) - @I II2 (T)I (6.8) 

When @l(t) and $(q) are substituted in the general solution the con- 

stant $(qo) vanishes. In this manner the solution of both our problems 
reduces to calculating quadrature% 

Knowing the solutions to the vortex problaw without shock and the 
problems just discussed involving shock, we are able to study the srore 
important supersonic gas flows with entropy functions which only champ 
slightly, including flow round profiles etc. 
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