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This article deals with plane steady motion of an ideal compressible
fluid. In [1] it has been demonstrated that if a function of the velo-
city v(p, ¥) (p is the pressure and i/ the stream function) is such that
the value of (1/v)(0%/0p%) 1s independent of Y, the nonlinear equation
of vortex motion [2,3 ] reduces to a linear-potential flow equation;
this is a generalisation of the known results due to Rudnev [3]. with
adiabatic motion this condition can be approximated if the entropy
function () = pllh/p (p is the density) has a small variation. Such
adiabatic flows, in the supersonic case, were dealt with earlier by
Tarasov [ 4,5,6 ] with the additional assumption that (1/v) (9%v/dp?) =
const, and without bringing out their relationship with potential flows.
We point out, moreover, that the nonlinear problems of the type discussed
here, and their general reduction to linear cases is studied in [7,81].

Here we give a proof to confirm the work in [1] for an example of
adiabatic flow. Further on, a generalised approximate method is discussed
which can be applied to potential motions in supersonic vortex flow. To
do this we construct an approximate general solution similar to that of
Khristianovich [ 9 ], but containing three and not two arbitrary func-
tions. A solution is given for the certain boundary-value prohlems with-
out shock and also for several flow problems with shock.

1. Statement of the problem. Let us take the plane vortex gas-
flow equation, deduced by Sedov [2] in Rudnev’s form [3]:
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Here 6 is the angle the velocity vector makes with the x axis, p, is
some constant with the dimensions of density; the velocity v is deter-
mined from the Bernouilli integral

k—1

2 k & .
—Pi—--l-*—ic—:_—i-pk '8‘(4)):10 (1.3)
where the total heat of stagnation i = const.

Introduce the function ¢ = ¥/a , and the dimensionless quantities
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where a_ is the critical velocity of sound. For simplicity, the dashes
will be omitted in what follows. Then, when we substitute the quantities
deduced in this manner into (1.1) and (1.2), the latter retain their
form except that p, in (1.2) disappears. Formula (1.3) and the adiabatic
equations will be written thus:

1
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It is assumed, as before in [4 ], that the function $(y¢) can be re-
presented as

() =B (1 + 3,(9) (1.6)

where 9, is its main part which is constant, whilst &,(y) is a small
variable quantity whose square can be neglected in comparison with unity.
If we take p, to be the density at the stagnation point on the stream-
line = ¢, where 8,(¢;)) = 0, the value of 3, will be determined from
(1.5) with the condition that at this point p = 1, p = (k + 1)/2k. For
air B = 1.4 and 9, = 0.2986.

into a series in powers of the small para-
meter &, () and limit it to two terms only. 3
Then we have ‘x
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Let us expand the function v(p, ¥) (1.5) -
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Furthermore, let us assume that the quantity (1/v)(8%v/dp?) is inde-
pendent of . For this we should have [2 ]

Xy (P) M (p) v 9p?

Here the strokes denote the operation of differentiating. From (1.9)
it follows that

)\o () _M"(p)__ 1 % (1.9)

M) = o (p)[my+m{ ] (1.10)

where » and »;, are integration constants, whilst the integral, with k =
1.4 is
1

d ;15 13 1 1—1 kE—1 3
‘e = —(5+5+ttanigy)  t=1(—iFg™0)
Making use of our choice of constants m and m, we replace function

A,(p) (1.8) approximately by function (1.10) so that there are two common
points, or a common tangent at one point; for 0.7 < '\o < 2.2 this gives
good approximation over large ramnges of A,. For A, = 1.309, if n = - 6.241
and m; = — 0.3868, we get by this means a second-order tangency. For this

case, on Fig. 1, the full line shows the accurate relation A;(A;) (1.8)
and the broken line represents the approximation from Fommla (1.10).

2. Reduction of the equation of vortex motion to a poten-
tial-flow equation. We introduce a new function ¥* by formula

ho(p)§* = §v (P, $)d¢p 2.1
Differentiating this equation wic; respect to p and @ we get
NI+ ¢*~eﬂ+§ dg (2.2)
o = ot (2.3)
Gl 0 G = v 2+ 5 (5t) (24)
N i 84’( = (2.5)

On subtracting Equation (2.5), multxphed term by term by the limit
relations (1.9), from (2.4), we arrive at an expression, on the R.H.S.
of which there will be the operator (1.1). Then the L.H.S. gives us a.
linear equation for the function y*
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* 2% *
Ao (p)% — " (p) s + 20 (p)af—p =0 (2.6)

which replaces the quasi-linear equation (1.1). Obviously (2.6) coincides
with a potential-flow equation, for which A,(p) is the velocity and ¢*
is the stream function.

To transform the formulas (1.2) we introduce the function

¢ ¢
U= (o 5e—20)dp = m {9 ¢)dp = mp (@) (@.7)
0 0
It follows from (2.2) and (2.7) that
W U =S (2.8)

Into (1.2) we substitute the derivatives of v with respect to p from
(2.7) and (1.9) and then using (2.8) and (2.3) we eliminate the products
v(dy¢/dp) and v(dy /36 ).

Then (1.2) reduces to the expression
dz = dz* +dz, (2.9

where dz* is the formula for potential flow

; o+ .~ , 00* » 09 oy OQ* B
dz* = — i [(xo% + i _;%_) 9 4 (xo i e rlp] (2.10)
whilst N
2= — 1917 (p) my () (2.11)

Thus, the integration of the vortex motion equation is reduced to amn
analogous potential-flow problem.

In accordance with the properties of implicit functions, the relation
between the stream-functions ¢ and ¥* (2.1) will be unique. Furthermore,
along the line p = const these functions either grow or decrease simul-
taneously, inasmuch as from (2.1) d¢s*/dy > 0. It follows from (2.1) and
(2.9) that the streamlines of the vortex motion at which x(¥) = 0 (z,=0)
coincide with the corresponding lines for potential flow. In particular,
the lines ¢y = 0 and ¥* = 0 coincide.

In this manner, to each vortex motion of a gas there can be *matched”
a single corresponding potential flow and vice versa. Thus, the solution
of the boundary-value problem without shock for vortex motion can be re-
placed by a solution in the same region p, 6 of a potential problem whose
boundary conditions are determined from those given for ¢ from (2.1).
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Having found the potential-flow solution, on reversing the process back
to (2.1) we obtain the solution of the vortex problem. It is evident
that the theorems of the existence and the uniqueness of the solution,
when proved for potential flows, also apply to the given vortex flows.

3. Approximate integration of the equations of vortex
supersonic gas flow. Now, dealing only with supersonic motion, we go
over in Equation (2.6) to the characteristic variables

N

Wl

E=0—0, o ()
6, °——Sp~p)dp, = ]/M:) (3.1)

where the critical pressure p_ is, evidently, identical for vortex and
for potential motion for any value of ¢, because it is determined from
the condition that (1.9) vanishes [2].

Equation (2.6) appears in the well-known form [9 ]

o4*  1dInVK, (3y*  * — v _
0F 97 +7 2 do (a& + a"l) (VKl = V K= )\ozp‘) (32)

In this expression K is Chaplygin’s function. This formula, together
with (3.1), ties wp vV K, A,, p, p as functions of 0. For adiabatic flow,
according to (1.8), taking accomt of the values of &, we have the
familiar formulas

"y hE—1 dA = Xt —1 k1
T % VK‘z‘/uo—M/v)“ =

Q
I
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The following approximation was suggested by Khristianovich (3.4)

VK, =a?2(c+¢) *= M , p= VK; » D= (cot(c»}—s)—}—ﬂ)

Nsin (¢ +¢) Ao

which, with the constants a02 = 18.5, ¢y = 0.185, N = 2.398, ¢ = 0.3347,
n = - 0.3161, gives a good approximation in the neighborhood of the
point ¢ = 0.197 to 0.20.

The general solution for this case is as follows:
G+t o) §* = @, () + D (x) (3.3)
where ®,(£) and ®,(y) are arbitrary functions.

Now let us study the vortex motion which corresponds to a given
potential motion. From (1.10), (3.1) and (3.4) we get



The problem of plane vortex gas flow 333

. d
Ay = Ry (0) [ml —_ mg V]i(; ] — ;lsgi'(};i)s) (a1 = qgmi, €= Cg -l ;nml) (3.6)

Taking a, = 0.03868, ¢, = — 48.74 we approximate the functionA, (1. 8)
by the functlon (3.6) wh1ch is tangent to it at the point o = 0. 197 In
Fig. 2 we give a comparison between the exact relations between A, and A,

and o (full lines) and the approximate
ones from Formulas (3.4) and (3.6).

4 From (2.1) and (3.4)-(3.6) we obtain
Y4 the approximate general solution to the
-2P  equation of vortex motion

16 "o

Ao\ / 2, E+mte)dtaG+mtc)x(d)=
L4 \\ 16 = Oy() + Dz (n) (3.7)
1/

12 where a = al/a and y() is determined

K2, “ in (2.7). It is clear from (2.7) that
O~ for any finite value of ¢, }(¢) is small,
o together with 8,(). Then, if we replace
"00 02 0% 0&”'8 the argument of the small function y(i))
) by the nearly equal quantity ¢* (3.5),
FIG. 2. from (3.7) we obtain, if necessary, an

implicit expression ¢ = (&, 7).

The formula for transformation to the physical plane was obtained by
us in the form (2.9). Let us put dz* (2.10) in characteristic coordinates

dz* = peo[(— 2o + i G2 Wk 4 (1 44 ‘“"\a“’ dn] (3.8)

Inserting into this the approximate expressionms p, A, and the partial
derivatives of function ¥* from (3.5), and working out the quadratures
we obtain

2* = ia, {aoem—i) ML E 4 ) [Dy (§) + Do ()] —

) (3.9
— N [fetero oy @z + (om0 @, () dy)
Furthermore
2y = — et =R N (€ 4 ) my (¢), m == ae; (¢, — ¢,) (3.10)
and
z:z*+zl (3.11)

In this way we have obtained an approximate general solution for a
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vortex supersonic flow in the (£, 5) plane which depends on three
arbitrary functions ®,(£), ®,(£) and x(¢), and also a formula for trans-
ferring to the physical plane. In an exactly similar way, approximate
general solutions can be found which correspond to other approximations
of Chaplygin functions, both for cases of subsonic and supersonic flow.

4. Boundary-value problems for flows without shock. It is
possible to establish four basic boundary-value problems for such flows:
Cauchy’s problem, Goursat’s problem, flow with a free surface and flow
past a solid wall. The function x(¢), which represents the vortex dis-
tribution, should, in this case be given. When the general solution
(3.7), is simple in form, all these problems can be solved, and, indeed,
directly, without introducing potential flow as recomménded in Section 2.
The same actual difficulties will arise, because functions ®,({) and
®,(n) are the same for both of the flows.

As an example we will examine the flow past a solid wall given by the
equations x = X(6) and y = Y(8), if, on the characteristic £ = £, =
const which intersects it, we are given ¥ = ¢, () and y(y).

As usual, we take the wall to be the line ¢ = 0. Then, on it y(¢¥) = 0
and

D, ) + Dy (w) = 0 (4.9)

where = w(£) is the equation of the solid wall in the £, n plane. From
(3.7), by the condition on the characteristic { = £, we have

O;()=(Go+n+c)bam+aG+n+e)lda(M—@i(s) (4.2)

The function ®,(£) is determined from (4.1) if w(£) is known. A
differential equation for finding w(£) is easily obtained from (3.9) be-
cause y(¢) = 0, from the condition of total differentiation (4.1) with
respect to ¢ by separating the real and imaginary parts. In symmetrical
form this 1is

(X' (0 —E)cos(w—E) + Y (0 — &) sin (@ —E)] [ (§) — 1] —
— 2Naysin(§ + o +¢) D, (w) o' (§) =0 (4.3)

It is just as simple to solve all the other problems.

5. Conditions at the shock waves. To find the solution to flow
problems involving shock waves let us examine the conditions which have
to be fulfilled. These are, first of all, conditions of dynamic compat-
ibility which for steady conditions are as follows:

-~ P1ln [l'n] = [plr [v-r] =0, [P”n] = Os llc] =0 (5’1)
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where the symbol [ ] denotes the discontinuity, index 1 relates to para-
meters before the shock, v, and v, are velocity components tangential
and normal to the shock wave drawn in the direction of the flow of the
gas. If B is the angle between the shock wave and the x-axis, then v, =
v cos (B~ 6) and v, = v sin (8- ).

Let us express the conditions (5.1) in dimensionless form. For p, we
take the stagnation density at some streamline y = ¢y, behind the wave
front and we assume i, and a, to remain the same before and after the

shock. Through these the fourth condition will be fulfilled whilst the

first three remain as before.

We will limit our study from now on to a steady oncoming flow along
the direction of the x-axis, i.e. 6, = 0. Denoting tan 8 by I" from (5.1),
after some simple transformation we obtain

2T sin € . .
I% =[p], v;=v([sinb4 cosh), pz,I'=pv(Icosb—sinb) (5.2)

Here we only examine those shock waves for which the flow remains
supersonic on traversing them, and the function 3() which interests us
hardly alters. Then, if we represent the velocity v(p, ¥) in the form
(1.7), from the first and the second condition we arrive at

% (p[m] _1>;..0 (5.3)
X @ =5 {zme (1— L)) (5.4)

In Formulas (5.2)-(5.4) we will regard Ag» Ay, p as functions of o
(3.1). Then, in the third condition (5.2), in accordance with the
Bernouilli integral 1/p = pv (dv/do), and eliminating " and x () we
arrive at a quadratic in cos 6 which yields

cost = TR+ [ - (L) (A R0 =A@ 69)

lvl}\l \ 2U1h P11’12 /ST

where A, is expressed by Formula (1.10).

Only a plus sign is admissible in front of the square root, as this
corresponds to supersonic flow behind the shock wave; when [p]l= 0,
cos § = 1, 6 =0, = 0. The expression (5.5) represents a relationship
between ¢ and @ on the shock wave. Evidently, then, I'=T" {¢) and
X ) = flo).

From (3.1) and (5.5) we have

2

£IT

=g — cos™1 H(s), 2%==5--cos™ ' H (o) (5.6)

which may be regarded as parametric equations of a shock wave in the
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characteristic plane, elimination of ¢ from which gives 7 = g(£) or
& = h(n). All the functions on the shock wave can be expressed through
one of the parameters o, £ or 7.

From Formula (1.2) with condition (1.9) after going over to character-
istic variables, we obtain

dz = ;A[w <L cos B 4 %sin())%d& -+ (z* cos 0 — T(j—& sin 9)%% dv;]

i (5.7)
dy == t(—uz« sin § -+ ;% Cos ()) g;ﬁ dz - (z‘ sinl | %& cos O)%i‘l dr,J
We will consider here £ and n to be connected by the expressions
(5.6). Then (5.7) might be a parametric equation for the shock wave in
the physical plane. As, on the wave, dy/dx = I', then from (5.7) and (5.2)
it 1s easy to derive the equation

a bii " ., ot (e ;, 5in 0 - o
(Bt o)+ P ks a0 (Pen-TED) 6

To this we add one more obvious equation

8y . G
et g% dy, = d (5.9)

On the shock wave ¢ = ¢° (0) = ¢,° (€) = ¢,°(n), X" W) = flo) = f,(£).

When solving boundary-value problems with the help of the general
solution (3.7) it is natural to take the functions entering (5.3) to
(5.8) in the approximate form given by (3.4) and (3.6). This gives satis-
factory results until [p]= ple) ~ p; is so small that the approximate
difference expression gives a significant error (about 10%), although
the error in determining (o) itself may not be great. If necessary this
difficulty might be overcome by constructing an approximation at the point
o corresponding to p = p,.

6. Boundary-value problems for flows with sheocks. In such
problems the function x() is not known beforehand in the approximate
general solution (3.7) and it has to be found together with @,(£) and
®,(n) from the boundary conditions and the conditions on the shock wave.

Let us examine two problems where we determine the motion of gas in
the region bounded by the shock wave and two intersecting character-
istics of opposing families. For simplicity we assume that on the stream-
line passing through O, the intersection of the shock wave with one of
the characteristics is ¢ = ¢ = 0. The parameters of the steady stream in
front of the wave are known.

Problem 1. Assume that the shape of the shock wave is defined by the



The problem of plane vortex gas flow 337

equations x = xB<r3 and y = yB(I‘).

To solve the problem one must know the values of the dimensionless
parameters p, and p,, which depend on the stagnation density p, behind
the shock on the streamline ¢% = 0, We find this from the condition
[io 1=o0, i.e. Po/Pg1 = Py/Pgy» because for S known at point O the
R.H.S. of the equation can be worked out exactly [3 1. In particular, if
the shock wave is tangent to the characteristic at point O, then Po=Po1*
We find the values of 2, and 00 at point O from (5.3) and (5.5) for
r=T,.

In view of the fact that [ = I"(6) the shock wave equation can be
written x = z%(0) and y = yo(a). Additionally, on it we have evidently
Y= plvl(yo —-yo) where Yo is the coordinate of point 0. If we introduce
(5.4) and integrate it we obtain

b =4°() = pa01 (¥° — ¥o); 7= y(c) ¢ (o) ds (6.1)

These equations give a parametric representation of the function y(y)
along the shock wave. This is sufficient for finding the solution in the
region occupied by streamlines which intersect the wave, as, for
instance, in the problem of finding the shape of a profile. To find the
solution for the other part of the region we should be given the func-
tion y(¢) there.

From (5.8) and (5.9) we have

WolU—PEMATE RE=lAPEMET@ (62

Thus, ¢ with its partial derivatives and y(y) are found on the shock
wave and the problem reduces to a Cauchy problem,

It follows from the general solution of (3.7) that

D@ =9 -az () +IE-Fx+c)+a@G bqtc)y (@) Z—:f

O (1) = ¢ )+ LE R o)+ he) (@) 5

If we express the R.H.S. of the first formula by & and of the second
by n and work out the quadratures, we find the functions dﬁ(f) and ¢5(ﬂ)-
The integration constants are found, as usual, from the conditions at
point O,

Problex 2. Suppose that the shape of the shock wave is not known, but
we are given the flow parameters on one of the characteristics (for
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instance 7 = 7,) which does not intersect the streamlines which go
through a section of the wave, i.e. ¢ = ¢, (£) and x(y) are given,

From the general solution (3.7) for n = 5, we find
D (€) = (E+mo+ )1 () +- a €+ my +¢1) 7.($1) — D2 (o) (6.4)

Eliminating d¢//dn from (5.8) and (5.9) and replacing d¢//d & from
(6.3) we arrive at the equation

QOHE +4r +ay )~ 0§ =0 (6.5)

where

Q@ = LR Ly —pg g

Adding to this (5.4) in this form
d ,
G (6.6)

we obtain a system of ordinary linear equations for finding |,bl°(f) and
X- Its solution is

E
=t ®= \Gad 1=
13

LB RE :
“om % (6.7)

{"&/‘ Yl

where £, is the value of { at point 0, and

R (§) = O, (&) exp S ah 41 dE) —

af, 1Q+ 1 d&)

(-

3 g

— exp S a/‘Q"‘— )S @, (§) exp(
1 o

A ey NNE

The function x(«/;) is therefore determined parametrically. Then, from
(3.7) taken on the shock wave we find

Dy () = (h (M) + M - ¢) $o° () -+ a(h(m) + M+ 1) (§:°) — D [h (m)} (6.8)

When ®, () and ®,(n) are substituted in the general solution the con-
stant @2(710) vanishes. In this manner the solution of both our problems
reduces to calculating quadratures.

Knowing the solutions to the vortex problems without shock and the
problems just discussed involving shock, we are able to study the more
inmportant supersonic gas flows with entropy functions which only change
slightly, including flow round profiles etc.
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